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One-dimensional spherical model with a phase transition
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The one-dimensional spherical model is generalized to include long-range interactions. A phase tran-
sition is shown to occur for a certain type of interaction. The partition function is explicitly calculated,

and the critical behavior of the model is examined.

PACS number(s): 64.60.—i, 12.40.Ee, 75.10.Hk

I. INTRODUCTION

In order to obtain a phase transition in one dimension,
we shall generalize the conventional spherical model
which involves only nearest neighbor interactions, to in-
clude long-range interactions. First, following Baxter [1],
let us briefly review the spherical model solved by Berlin
and Kac [2] in 1952. In this model, one assigns a real
spin variable o j to each lattice site, subject to the con-
straint zjy=la§=N. Thus, the partition function for the

spherical model can be written as
Z~=f°° f°° do,--doy

Xexp ‘KE o;0,+H 3o0; ]
G j

X8 [N—?af] , (1)

where K=J/kT, H=h /kT, and the summation (j,/)
ranges over nearest neighbors only. However, in our
modification, the interaction term is replaced by
K3;10;J;0,, where J; is the generic matrix element of
J in Eq. (3) below, and depends only upon the distance
between spins o; and o,. Thus, the partition function of
our model becomes

ZN:f_ww . f_:dgl cedoy

J

With a suitable choice of the matrix J, this formula can
express the partition function of a spherical model on an
arbitrary lattice in any dimension. However, since we are
now considering the one-dimensional case with periodic
boundary conditions, and, as mentioned above, J;; de-
pends on the distance between o ; and o, the matrix J is
cyclic, as follows:

J(O) J(1) J(N-1)
J(N—1) J(0) J(N —-2)
J= : : (3)
J(1) J(Q2) J(0)

To ensure translational invariance, i.e., for a finite circu-
lar model, rotational invariance, we assume
J(N —n)=J(n). Hence, the above matrix is also sym-
metric. We shall evaluate the thermodynamic functions
of systems defined by choosing certain specific expres-
sions for J;.

II. EVALUATION OF THE PARTITION FUNCTION

We will first follow the derivation by Berlin and Kac

0 [2] as presented by Baxter [1] and then modify this pro-
X8 { N-——zg'}] . (2)  cedure as appropriate for our examples. The partition
j function of Eq. (2) can be rewritten as
1
ZN=(27T)_lf_w doy - -daNf_w ds exp‘len o;Jyo;+H Jo;+(a+is)N—(a +is)2012~ ) (4)
* * U i j

where we have used the Fourier transform of the § function and also added an extra term 0=aN —a 3, jaf. in the ex-
ponent, where a is an arbitrary real constant. Now, we define the matrix V by
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V=(a+is)I—KJ ,

(5)

where I is the N X N unit matrix. Moreover, defining H to be an N-dimensional vector with all components equal to H,
and o as an N-dimensional vector with elements o ;, one can write the partition function as

ZN=(21r)_1fj ..f_w daf_m dsexp{—o"Vo+HTo+(a+is)N} . (6)

After diagonalizing the matrix ¥ and integrating over o,
Zy becomes

Z, =4V [ ds[dety] 12
Xexp{(a+is)N+IH'V"H} . (7

From the definition of the matrix ¥ in Eq. (5), since J is a
symmetric real cyclic matrix, the eigenvalues of ¥ are [3]

Ar=a+tis—K

N
S J(t)cos(kat/N)I . (8)

t=1

Thus,

N
IndetV= 3 InA,
k=1

N
=3 In{(a+is)—K
k=1 t=1

N
3> J(t)cos(21rkt/N)} ‘ y

)
and defining o, =2mk /N, this becomes
Sin{(a+is)—K[J(1)cosw; +J(2)cos2wy
k

+ -+ +J(N)cosNaw, ]} -

The above summation over w; can replaced by integra-
tion when N is large, and we shall write

IndetV =N[InK +g(z)], (10)
where

g@=02m" [“doln{z+E~[J(1)coso+J(2)cos20

+--- 1}, (11)

z=(a+is—K&)/K , (12)
and £=3N_,J(D).

Since J is cyclic, 1=(1,...,1) is an eigenvector corre-

sponding to the eigenvalue Kz. Hence, H is the eigenvec-
tor of V corresponding to the eigenvalue a +is — K=Kz
and the second term in the exponent of Eq. (7) becomes
NH?/4Kz. Substituting this and the above equations (11)
and (12) into (7), we can now write the partition function
as

Zy=(K /2mi)a /KN [Tz o) | (13)

c—1

=]
where
2

H
= —1
f(2)=Kz+KE—1g(z)+ 4Kz

and ¢ =(a—K§)/K. Evaluating the above integral by

(14)

f

the method of steepest descent, the partition function for
sufficiently large N becomes

K N/2
Nf(z
Zyv=g-|%| e fizo) (15)

o

where z, is the value of z at which f'(z)=0 and the arbi-
trary constant a has been chosen to be K(z,+§) (ie.,
¢=zy). From the above equation (14), the condition
f'(zy)=0is equivalent to

2

4Kz}

:Tg’(ZO) . (16)

III. EVALUATION OF THERMODYNAMIC FUNCTIONS

From the expression (15) for the partition function, the
free energy per spin ¢ in the thermodynamic limit be-
comes

—Y — lim N"'nZy=1I %

= lim +flzg). (A7)

Hence, the magnetization, magnetic susceptibility, inter-
nal energy, and specific heat per spin are

—_4d | ¥y |__H = h (18)
dH | kT 2Kz, 2z, ’

oM 1 h |92
== 19
X=3n "2z 2022 |0k | 19
28 Y| g _ A
U=-T'-7 | = VKT —J (2 +E) i (20)

and

U _, 0z h? | 92g

= —_ _ —_— —— o . 21
¢ oT k=7 oT 4ng oT @1)

z, is a function of K and H (in particular, a function of 7T)
and is determined from Egs. (11) and (16). We shall ex-
amine a special case and evaluate z, as a function of K
and H in Sec. IV.

IV. A SPECIAL CHOICE OF J

In the previous sections we have described the deriva-
tion of the partition function and some thermodynamic
functions for an arbitrary translation-invariant one-
dimensional spherical model. However, we have not
specified the generic matrix element J (/) of J, i.e., the in-
teraction of spins o; and o, ,,. Thus, we have as many

j
one-dimensional spherical models with distance-
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FIG. 1. Interaction strength between spins.

dependent couplings as choices of J. If we choose
J(l)=exp(—1I?/4), the interaction becomes Gaussian,
and if we choose J(1)=1 and J(I)=0 (I > 1), we recover
the nearest neighbor interaction model, and so on.

However, we must suitably restrict our choice of J in
order to obtain a phase transition. From Eq. (11), the
right-hand side of (16) becomes

’ _ ag(z)
18'(20)=1 [—55;—

Z=Zo
) -1
=(4‘rr)—1f0 "do

N
zo+E— 3 J()cos(lw)
=1

(22)

Following Baxter [1] there exists a critical point
K,.=1g'(0) only if this integral converges. Thus, if we
define j(w), for large N, to be

N
jl@)=73 J(Dcos(lw) , (23)
=1

then, in order to obtain a finite nonzero critical tempera-
ture, j(w) must be of the form w® as wl0, where
0<a<1. Although the above integral also converges for
a =<0, the value of @ must be positive since negative
values of a correspond to negative temperatures. Hence,
for the simplest choice, each element of the generic ma-
trix J (/) becomes a Fourier coefficient of %, that is,

|

N/2
(2m)*

1+a

K |7
o | X

X K

Zo+

[zo+(2m)*] " 2exp {N

where ,F(a,b;c;z) denotes the hypergeometric function.

V. BEHAVIOR OF THERMODYNAMIC FUNCTIONS

Now, we shall examine the behavior of the thermo-
dynamic functions in the limit 2 —0. First, consider the

+ =
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FIG. 2. Critical temperature as a function of a.

1 2T
—_——— — a 24
J() e fo w%os(lo)dw , (24)

or, by a known formula [4],

1

J(hH=
( ) 4‘)Tll+a

(e 1TOT2D (14, —21mi)

+e THIFAT2R (1 4+ g 2 i)
—2cos[(1+a)mr/2]T(1+a)} , (25)

where I'(x,y) denotes the incomplete I" function. From
the above equation (24), J (1) is a positive, monotonic de-
creasing function of the lattice distance /. The behavior
of J(1), i.e., the strength of the coupling, for the value
a=1, is shown in Fig. 1. The a dependence of the criti-
cal point K,=;g'(0) can be obtained by substituting
Jj(w)=w"into Eq. (22) above, which yields

_@2m~°
K, Al—a) (26)
Hence, the maximum critical temperature T,,,, is ob-
tained for a=0.46, and the value of T, is
172
—— !_(21;;—)— . @7

T,—0 for both limiting cases, a—0 and a—1, since
J(1)=0 in the limit a—0. The behavior of K, as a func-
tion of a is shown in Fig. 2.

The explicit expression for the partition function can
be obtained by evaluating the integral in Eq. (11) and sub-
stituting the result into Eq. (15), which yields

|||

(28)

L P JFi(La S1+a =z 2m)*) +

2

[

temperature range T>T, (K <K_). Then, it follows
from Egs. (16) and (22) that z, approaches a nonzero
value w in the limit A —0 (H —0). Also, as in Baxter [1]
(p. 67), w is a monotonic function of T for T = T, and ap-
proaches zero as T—T7,. Thus, the thermodynamic
functions in the limit # —0 become



3668 DORIJE C. BRODY 49

M(T)

Te

FIG. 3. Spontaneous magnetization M and magnetic suscep-
tibility y.

M=0, (29)
-_1
2w (30)
U=1kT—J(w+§), (31)
and
dw
=1 —g|SW
C=3k—J aT | (32)

where £=(27)%/(1+a). No spontaneous magnetization
occurs above the critical temperature and since w —0 as
T—T,, the magnetic susceptibility diverges at the criti-
cal point.

For T <T,,z,—0 as h —0. Hence, from Eq. (16),

172
lim 2£=[4K(K —K,)]'2=2K |1— - (33)
H—0 ZO TC
Hence,
172
= |- T

M= ll | (34)

X——»oo ’ (35)

U=1kT—JE, (36)
and

c=1k . (37)

The behaviors of the magnetization and magnetic suscep-
tibility are shown in Fig. 3.

VI. OTHER ONE-DIMENSIONAL MODELS
WITH PHASE TRANSITIONS

The Ising model with the interaction energy

J(H=JI"*¢ (38)

is known [5] to exhibit a phase transition for 1 <s <2 but
not for s >2 or s =1. Thus, s =2 is the critical power di-
viding short- and long-range interactions in the one-
dimensional model. In particular, the borderline case
s =2 (the Anderson model) has been extensively studied
in connection with time evolution phenomena such as the
Kondo problem.

In particular, Dyson [6] showed that, in the Ising mod-
el with the interaction energy

Inin(|7|+3)

J(=J B

the order parameter is discontinuous at the critical point,
and a rigorous proof of the existence of a phase transition
for the Anderson model (s =2) was given by Frohlich
and Spencer [7] However, that work, although proving
that the critical point 8, < «, did not present any specific
upper bound for B.. The upper bound on B, as well as
the existence of the spontaneous magnetization, assuming
a translation-invariant interaction such that the limit

111m121(1)=1+ ,

is well defined, has been studied in detail, using results
from percolation theory, by Aizenman et al. [8].

The latter authors also rigorously proved that for the
on-dimensional g-state Potts model, there exists a positive
spontaneous magnetization M(B) if BJ T > g, where J * is
defined above, that this magnetization is discontinuous at
the transition point, and that M(B8)=0 if BJ* <1. No-
tice that the behavior of the magnetization M in the
present model is different from that of the above-
mentioned models in that the magnetization is continu-
ous (although the derivative of the magnetization is not
continuous) in the present model but not in the above-
mentioned models.

VII. CONCLUSION

The critical behavior of the present model is similar to
that of the conventional spherical model in dimensions
greater than 2. This follows from the fact that the in-
tegral in Eq. (22) converges for dimensions greater than 2
in the conventional spherical model. However, in the
present model, the introduction of long-range interac-
tions eliminates the need to consider higher dimensions in
order to exhibit critical behavior.

As was mentioned in Sec. VI, there are other one-
dimensional spin models which exhibit phase transitions
at finite temperature. Dyson’s hierarchical model [9] is
one such model, but is rather artificial in lacking transla-
tional invariance. The one-dimensional Ising model with
a translation-invariant coupling of the asymptotic form
J(I)=1"? (the Anderson model) and the g-state Potts
model with the same interaction also display a discon-
tinuity in the spontaneous magnetization. Although the
Anderson model has been extensively studied in connec-
tion with the Kondo problem, the mathematical aspects
are highly nontrivial. By contrast, the mathematical
derivations involved in the present model are quite
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straightforward. Also, the present interaction is transla-
tion invariant and decreases monotonically with increas-
ing distance between spins. Application of general
theorems on Fourier series [10] shows that the series
37>/ (I) is absolutely convergent, in particular,
J(H=0(1"1) as I — . Thus, the coupling introduced in
the present case also appears quite natural and physically
plausible as well as the above-mentioned Anderson and

Potts models.

One may expect that the introduction of suitable long-
range interactions in a two-dimensional spherical model
would also yield a phase transition, and moreover, that
the required coupling strength would decrease even more
rapidly than in the preceding one-dimensional case. The
two-dimensional case will be discussed in a subsequent

paper.
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